Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Front Immunol ; 15: 1355128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361942

RESUMO

Background: Living donor (LD) kidney transplantation in the setting of ABO blood group incompatibility (ABOi) has been previously reported to be associated with increased risk for antibody-mediated rejection (ABMR). It is however unclear if the presence of pre-transplant donor specific antibodies (DSA) works as an additive risk factor in the setting of ABOi and if DSA positive ABOi transplants have a significantly worse long-term outcome as compared with ABO compatible (ABOc) DSA positive transplants. Methods: We investigated the effect of pre-transplant DSA in the ABOi and ABOc setting on the risk of antibody-mediated rejection (ABMR) and graft loss in a cohort of 952 LD kidney transplants. Results: We found a higher incidence of ABMR in ABOi transplants as compared to ABOc transplants but this did not significantly affect graft survival or overall survival which was similar in both groups. The presence of pre-transplant DSA was associated with a significantly increased risk of ABMR and graft loss both in the ABOi and ABOc setting. We could not detect an additional risk of DSA in the ABOi setting and outcomes were comparable between DSA positive ABOi and ABOc recipients. Furthermore, a combination of DSA directed at both Class I and Class II, as well as DSA with a high mean fluorescence intensity (MFI) showed the strongest relation to ABMR development and graft loss. Conclusion: The presence of pre-transplant DSA was associated with a significantly worse long-term outcome in both ABOi and ABOc LD kidney transplants and our results suggests that the risk associated with pre-transplant DSA is perhaps not augmented in the ABOi setting. Our study is the first to investigate the long-term effects of DSA in the ABOi setting and argues that pre-transplant DSA risk could potentially be evaluated similarly regardless of ABO compatibility status.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Estudos de Coortes , Suíça/epidemiologia , Doadores Vivos , Rejeição de Enxerto , Sistema ABO de Grupos Sanguíneos , Anticorpos
2.
Front Immunol ; 14: 1104371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875145

RESUMO

Introduction: The type of donation may affect how susceptible a donor kidney is to injury from pre-existing alloimmunity. Many centers are, therefore, reluctant to perform donor specific antibody (DSA) positive transplantations in the setting of donation after circulatory death (DCD). There are, however, no large studies comparing the impact of pre-transplant DSA stratified on donation type in a cohort with a complete virtual cross-match and long-term follow-up of transplant outcome. Methods: We investigated the effect of pre-transplant DSA on the risk of rejection, graft loss, and the rate of eGFR decline in 1282 donation after brain death (DBD) transplants and compared it to 130 (DCD) and 803 living donor (LD) transplants. Results: There was a significant worse outcome associated with pre-transplant DSA in all of the studied donation types. DSA directed against Class II HLA antigens as well as a high cumulative mean fluorescent intensity (MFI) of the detected DSA showed the strongest association with worse transplant outcome. We could not detect a significant additive negative effect of DSA in DCD transplantations in our cohort. Conversely, DSA positive DCD transplants appeared to have a slightly better outcome, possibly in part due to the lower mean fluorescent intensity (MFI) of the pre-transplant DSA. Indeed when DCD transplants were compared to DBD transplants with similar MFI (<6.5k), graft survival was not significantly different. Discussion: Our results suggest that the negative impact of pre-transplant DSA on graft outcome could be similar between all donation types. This suggests that immunological risk assessment could be performed in a similar way regardless of the type of donor kidney transplantation.


Assuntos
Anticorpos , Doadores Vivos , Humanos , Tipagem e Reações Cruzadas Sanguíneas , Estudos de Coortes , Suíça
3.
Front Immunol ; 13: 1005790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211367

RESUMO

Background: Pre-transplant donor specific antibodies (DSA), directed at non-self human leukocyte antigen (HLA) protein variants present in the donor organ, have been associated with worse outcomes in kidney transplantation. The impact of the mean fluorescence intensity (MFI) and the target HLA antigen of the detected DSA has, however, not been conclusively studied in a large cohort with a complete virtual cross-match (vXM). Methods: We investigated the effect of pre-transplant DSA on the risk of antibody-mediated rejection (ABMR), graft loss, and the rate of eGFR decline in 411 DSA positive transplants and 1804 DSA negative controls. Results: Pre-transplant DSA were associated with a significantly increased risk of ABMR, graft loss, and accelerated eGFR decline. DSA directed at Class I and Class II HLA antigens were strongly associated with increased risk of ABMR, but only DSA directed at Class II associated with graft loss. DSA MFI markedly affected outcome, and Class II DSA were associated with ABMR already at 500-1000 MFI, whereas Class I DSA did not affect outcome at similar low MFI values. Furthermore, isolated DSA against HLA-DP carried comparable risks for ABMR, accelerated eGFR decline, and graft loss as DSA against HLA-DR. Conclusion: Our results have important implications for the construction and optimization of vXM algorithms used within organ allocation systems. Our data suggest that both the HLA antigen target of the detected DSA as well as the cumulative MFI should be considered and that different MFI cut-offs could be considered for Class I and Class II directed DSA.


Assuntos
Transplante de Rim , Anticorpos , Estudos de Coortes , Rejeição de Enxerto , Sobrevivência de Enxerto , Antígenos HLA , Antígenos HLA-DP , Humanos , Transplante de Rim/efeitos adversos , Suíça , Doadores de Tecidos
4.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33861848

RESUMO

Lymphatic endothelial cells (LECs) present peripheral tissue antigens to induce T cell tolerance. In addition, LECs are the main source of sphingosine-1-phosphate (S1P), promoting naive T cell survival and effector T cell exit from lymph nodes (LNs). Autophagy is a physiological process essential for cellular homeostasis. We investigated whether autophagy in LECs modulates T cell activation in experimental arthritis. Whereas genetic abrogation of autophagy in LECs does not alter immune homeostasis, it induces alterations of the regulatory T cell (T reg cell) population in LNs from arthritic mice, which might be linked to MHCII-mediated antigen presentation by LECs. Furthermore, inflammation-induced autophagy in LECs promotes the degradation of Sphingosine kinase 1 (SphK1), resulting in decreased S1P production. Consequently, in arthritic mice lacking autophagy in LECs, pathogenic Th17 cell migration toward LEC-derived S1P gradients and egress from LNs are enhanced, as well as infiltration of inflamed joints, resulting in exacerbated arthritis. Our results highlight the autophagy pathway as an important regulator of LEC immunomodulatory functions in inflammatory conditions.


Assuntos
Autoimunidade/imunologia , Células Endoteliais/imunologia , Macroautofagia/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Artrite/imunologia , Movimento Celular/imunologia , Células Cultivadas , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Lisofosfolipídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Esfingosina/análogos & derivados , Esfingosina/imunologia
5.
Cell Rep ; 28(1): 21-29.e6, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269441

RESUMO

Regulatory T cells (Tregs) play a crucial role in controlling autoimmune and inflammatory responses. Recent studies have demonstrated that dendritic cells (DCs) contribute to the homeostasis of peripheral Tregs. Autophagy, a critical pathway for cellular homeostasis, is active in DCs and is upregulated in different inflammatory conditions. We have shown that Tregs are expanded and have phenotypic alterations and impaired suppressive functions in mice with autophagy-deficient DCs. RNA profiling of Tregs revealed that autophagy in DCs is required to stabilize Treg expression signatures. This phenotype is linked to the downregulation of ICOS-Ligand expression in autophagy-deficient DCs, a consequence of the accumulation of ADAM10, the metalloproteinase responsible for its cleavage. Upon inflammation, in antigen-induced arthritis, mice with autophagy-deficient DCs exhibit increased synovial inflammation and cartilage and bone erosion correlating with Treg-to-Th17 conversion. Our data reveal a mechanism that couples autophagy deficiency in DCs to the function, homeostasis, and stability of Tregs.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Células Dendríticas/imunologia , Macroautofagia/genética , Linfócitos T Reguladores/imunologia , Animais , Proteína 5 Relacionada à Autofagia/genética , Células Dendríticas/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Homeostase/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T Reguladores/metabolismo , Células Th17/imunologia
6.
Methods Mol Biol ; 1988: 357-373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147952

RESUMO

Macroautophagy has recently emerged as an important catabolic process involved not only in innate immunity but also in adaptive immunity. Initially described to deliver intracellular antigens to MHC class II loading compartments, its molecular machinery has now also been described to impact the delivery of extracellular antigens to MHC class II loading compartments through the noncanonical use of the macroautophagy machinery during LC3-associated phagocytosis (LAP). Therefore, in pathological situations (viral or bacterial infections, tumorigenesis) the pathway might be involved in shaping CD4+ T cell responses.In this chapter we describe three basic experiments for the monitoring and manipulation of macroautophagic antigen processing toward MHC class II presentation through the canonical pathway. Firstly, we will discuss how to monitor autophagic flux and autophagosome fusion with MHC class II loading compartments. Secondly, we will show how to target proteins to autophagosomes in order to monitor macroautophagy dependent antigen processing via their enhanced presentation on MHC class II molecules to CD4+ T cells. And finally, we will describe how macroautophagy can be silenced in antigen presenting cells, like human monocyte-derived dendritic cells (DCs).


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Técnicas Imunológicas/métodos , Macroautofagia , Células A549 , Antígenos de Neoplasias/metabolismo , Autofagossomos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Clonais , Células Dendríticas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Interferon gama/metabolismo , Proteínas de Membrana/metabolismo , Monócitos/citologia
7.
Life Sci Alliance ; 1(6): e201800164, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30584641

RESUMO

How lymph node stromal cells (LNSCs) shape peripheral T-cell responses remains unclear. We have previously demonstrated that murine LNSCs, lymphatic endothelial cells (LECs), blood endothelial cells (BECs), and fibroblastic reticular cells (FRCs) use the IFN-γ-inducible promoter IV (pIV) of the MHC class II (MHCII) transactivator CIITA to express MHCII. Here, we show that aging mice (>1 yr old) in which MHCII is abrogated in LNSCs by the selective deletion of pIV exhibit a significant T-cell dysregulation in LNs, including defective Treg and increased effector CD4+ and CD8+ T-cell frequencies, resulting in enhanced peripheral organ T-cell infiltration and autoantibody production. The proliferation of LN-Tregs interacting with LECs increases following MHCII up-regulation by LECs upon aging or after exposure to IFN-γ, this effect being abolished in mice in which LECs lack MHCII. Overall, our work underpins the importance of LNSCs, particularly LECs, in supporting Tregs and T-cell tolerance.

8.
Mol Cell Proteomics ; 17(10): 1909-1921, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980615

RESUMO

Seasonal epidemics of influenza A virus are a major cause of severe illness and are of high socio-economic relevance. For the design of effective antiviral therapies, a detailed knowledge of pathways perturbed by virus infection is critical. We performed comprehensive expression and organellar proteomics experiments to study the cellular consequences of influenza A virus infection using three human epithelial cell lines derived from human lung carcinomas: A549, Calu-1 and NCI-H1299. As a common response, the type I interferon pathway was up-regulated upon infection. Interestingly, influenza A virus infection led to numerous cell line-specific responses affecting both protein abundance as well as subcellular localization. In A549 cells, the vesicular compartment appeared expanded after virus infection. The composition of autophagsomes was altered by targeting of ribosomes, viral mRNA and proteins to these double membrane vesicles. Thus, autophagy may support viral protein translation by promoting the clustering of the respective molecular machinery in autophagosomes in a cell line-dependent manner.


Assuntos
Autofagossomos/metabolismo , Vírus da Influenza A/metabolismo , Proteínas Ribossômicas/metabolismo , Autofagia , Linhagem Celular Tumoral , Humanos , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo
9.
Curr Opin Immunol ; 52: 68-73, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29719275

RESUMO

The macroautophagy machinery supports membrane remodeling and fusion events that lead to the engulfment of cytoplasmic constituents in autophagosomes and their degradation in lysosomes. The capacity of this machinery to regulate membrane adaptors and influence vesicle fusion with lysosomes seems to be used not only for autophagosomes, but also for endosomes. We summarize recent evidence that two aspects of endocytosis are regulated by parts of the macroautophagy machinery. These are recruitment of adaptors for the internalization of surface receptors and the fusion of phagosomes with lysosomes. Antigen processing for MHC presentation is affected by these alternative functions of the macroautophagy machinery. Primarily extracellular antigen presentation by MHC class II molecules after phagocytosis benefits from this regulation of phagosome maturation. Furthermore, MHC class I molecules are more efficiently internalized in the presence of the core macroautophagy machinery. The identification of these alternative functions of macroautophagy proteins not only complicates the interpretation of their deficiencies in biological processes, but could also be harnessed for the regulation of antigen presentation to T cells.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/imunologia , Proteínas Relacionadas à Autofagia/genética , Endocitose/imunologia , Antígenos de Histocompatibilidade/imunologia , Animais , Antígenos/metabolismo , Autofagia/genética , Autofagia/imunologia , Proteínas Relacionadas à Autofagia/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Fagocitose/genética , Fagocitose/imunologia , Fagossomos/imunologia , Fagossomos/metabolismo
10.
Oncoimmunology ; 7(3): e1407897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399408

RESUMO

Oncolytic immunotherapy using oncolytic viruses (OV) has been shown to stimulate the antitumor immune response by inducing the release of tumor-associated antigens (TAA) and danger signals from the dying infected tumor cells. In this study, we sought to determine if the lysis of tumor cells induced by different OV: measles virus, vaccinia virus, vesicular stomatitis virus, herpes simplex type I virus, adenovirus or enterovirus, has consequences on the capacity of tumor cells to present TAA, such as NY-ESO-1. We show that the co-culture of NY-ESO-1neg/HLA-DP4pos melanoma cells with NY-ESO-1pos/HLA-DP4neg melanoma cells infected and killed by different OV induces an intercellular transfer of NY-ESO-1 that allows the recognition of NY-ESO-1neg/HLA-DP4pos tumor cells by an HLA-DP4/NY-ESO-1(157-170)-specific CD4+ cytotoxic T cell clone, NY67. We then confirmed this result in a second model with an HLA-DP4+ melanoma cell line that expresses a low amount of NY-ESO-1. Recognition of this cell line by the NY67 clone is largely increased in the presence of OV productive infection. Altogether, our results show for the first time another mechanism of stimulation of the anti-tumor immune response by OV, via the loading of tumor cells with TAA that sensitizes them for direct recognition by specific effector CD4+ T cells, supporting the use of OV for cancer immunotherapy.

11.
Autophagy ; 13(6): 1025-1036, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28296542

RESUMO

Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II-containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4+ T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4+ T cell stimulation.


Assuntos
Antígenos CD1d/metabolismo , Autofagia , Endocitose , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Antígenos/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Membrana Celular/metabolismo , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Endossomos/metabolismo , Glicolipídeos/metabolismo , Imunização , Lipídeos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Autophagy ; 12(9): 1681-2, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27439741

RESUMO

We have recently shown that the LC3/Atg8 lipidation machinery of macroautophagy is involved in the internalization of MHC class I molecules. Decreased internalization in the absence of ATG5 or ATG7 leads to MHC class I surface stabilization on dendritic cells and macrophages, resulting in elevated CD8(+) T cell responses during viral infections and improved immune control. Here, we discuss how the autophagic machinery supports MHC class II restricted antigen presentation, while compromising MHC class I presentation via internalization and degradation.


Assuntos
Apresentação de Antígeno/imunologia , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Autofagia , Antígenos de Histocompatibilidade Classe II/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Membrana Celular/metabolismo , Sistema Livre de Células , Células Dendríticas/metabolismo , Humanos , Macrófagos/metabolismo , Fagocitose , Linfócitos T/imunologia
13.
Cell Rep ; 15(5): 1076-1087, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27117419

RESUMO

The macroautophagy machinery has been implicated in MHC class II restricted antigen presentation. Here, we report that this machinery assists in the internalization of MHC class I molecules. In the absence of the autophagy factors Atg5 and Atg7, MHC class I surface levels are elevated due to decreased endocytosis and degradation. Internalization of MHC class I molecules occurs less efficiently if AAK1 cannot be recruited via Atg8/LC3B. In the absence of Atg-dependent MHC class I internalization, dendritic cells stimulate CD8(+) T cell responses more efficiently in vitro and in vivo. During viral infections, lack of Atg5 results in enhanced influenza- and LCMV-specific CD8(+) T cell responses in vivo. Elevated influenza-specific CD8(+) T cell responses are associated with better immune control of this infection. Thus, the macroautophagy machinery orchestrates T cell immunity by supporting MHC class II but compromises MHC class I restricted antigen presentation.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Cultivadas , Endocitose/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
J Immunol ; 196(1): 64-71, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26608910

RESUMO

NY-ESO-1-specific CD4(+) T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4(+) T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4(+) T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4(+) T cells and should be explored during immunotherapy of melanoma.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/transplante , Imunoterapia Adotiva , Melanoma/imunologia , Melanoma/terapia , Proteínas de Membrana/imunologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Apresentação de Antígeno/imunologia , Autofagia/imunologia , Proteína 12 Relacionada à Autofagia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Células Dendríticas/imunologia , Endocitose/imunologia , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Leupeptinas , Ativação Linfocitária/imunologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Interferência de RNA , RNA Interferente Pequeno , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
15.
Front Immunol ; 6: 459, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441964

RESUMO

Although autophagy is a process that has been studied for several years its link with antigen presentation and T cell immunity has only recently emerged. Autophagy, which means "self-eating," is important to maintain cell homeostasis and refers to a collection of mechanisms that delivers intracellular material for degradation into lysosomes. Among them, macroautophagy pathway has many implications in different biological processes, including innate and adaptive immunity. In particular, macroautophagy can provide a substantial source of intracellular antigens for loading onto MHC class II molecules using the alternative MHC class II pathway. Through autophagosomes, endogenous self-antigens as well as antigens derived from intracellular pathogens can be delivered to MHC class II compartment and presented to CD4(+) T cells. The pathway will, therefore, impact both peripheral T cell tolerance and the pathogen specific immune response. This review will describe the contribution of autophagy to intracellular presentation of endogenous self- or pathogen-derived antigens via MHC class II and its consequences on CD4(+) T cell responses.

16.
PLoS One ; 10(7): e0132688, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26204512

RESUMO

S100B is a Ca2+ binding protein and is typically associated with brain and CNS disorders. However, the role of S100B in an inflammatory situation is not clear. The aim of the study was to determine whether S100B is likely to influence inflammation through its effect on macrophages. A murine macrophage cell line (RAW 264.7) and primary bone marrow derived macrophages were used for in vitro studies and a model of retinal inflammatory disease in which pathogenesis is highly dependent on macrophage infiltration, Experimental Autoimmune Uveoretinitis, for in vitro study. Experimental Autoimmune Uveoretinitis is a model for the human disease posterior endogenous uveoretinitis, a potentially blinding condition, with an autoimmune aetiology, that mainly affects the working age group. To date the involvement of S100B in autoimmune uveoretinitis has not been investigated. Real-time PCR array analysis on RAW 246.7 cells indicated up-regulation of gene expression for various cytokines/chemokines in response to S100B, IL-1ß and CCL22 in particular and this was confirmed by real-time PCR. In addition flow cytometry and ELISA confirmed up-regulation of protein production in response to S100B for pro-IL-1ß and CCL22 respectively. This was the case for both RAW 264.7 cells and bone marrow derived macrophages. Induction of EAU with retinal antigen in mice in which S100B had been deleted resulted in a significantly reduced level of disease compared to wild-type mice, as determined by topical endoscopic fundus imaging and histology grading. Macrophage infiltration was also significantly reduced in S100B deleted mice. Real-time PCR analysis indicated that this was associated with reduction in CCL22 and IL-1ß in retinas from S100B knock-out mice. In conclusion S100B augments the inflammatory response in uveoretinitis and this is likely to be, at least in part, via a direct effect on macrophages.


Assuntos
Quimiocina CCL22/genética , Interleucina-1beta/genética , Macrófagos/imunologia , Retinite/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Uveíte/genética , Animais , Linhagem Celular , Quimiocina CCL22/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Retinite/metabolismo , Retinite/patologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Uveíte/metabolismo , Uveíte/patologia
17.
Semin Cancer Biol ; 23(5): 391-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23541679

RESUMO

Macroautophagy was originally discovered as a nutrient salvage pathway during starvation. By now it has not only become clear that degradation of cytoplasmic constituents via transport by autophagosomes to lysosomes can be used for innate and adaptive immunity, but that the core machinery assists antigen presentation to the immune system by a variety of vesicular transport pathways. All of these rely on the presentation of small protein waste fragments, which are generated by a variety of catabolic pathways, including macroautophagy, on major histocompatibility complex (MHC) molecules. In this review, we will point out how classical macroautophagy, as well as phagocytosis and exocytosis, which both benefit from the core autophagic machinery, assist in antigen presentation on MHC class I and II molecules to CD8+ and CD4+ T cells, respectively. Finally to high-light that macroautophagy is always intimately interconnected with cell death in addition to the various supported vesicular transport function, its role in lymphocyte, especially T cell, development and function will be discussed. From this body of work a picture is emerging that the core machinery of macroautophagy can be used for a variety of vesicular transport pathways and to modulate cell survival, besides its classical role in delivering intracellular material for lysosomal degradation.


Assuntos
Apresentação de Antígeno/imunologia , Autofagia/imunologia , Exocitose/imunologia , Sistema Imunitário/imunologia , Fagocitose/imunologia , Animais , Humanos
18.
Methods Mol Biol ; 960: 473-488, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23329508

RESUMO

Macroautophagy has recently emerged as an important catabolic process involved not only in innate immunity but also in adaptive immunity. Initially described to deliver intracellular antigens to MHC class II loading compartments, its molecular machinery has now also been described to enhance the delivery of extracellular antigens to MHC class II loading compartments by accelerating phagosome maturation. Therefore in pathological situations (viral or bacterial infections, tumorigenesis) the pathway might be involved in shaping CD4(+) T cell responses.In this chapter we describe three basic experiments for the monitoring and manipulation of macroautophagic antigen processing towards MHC class II presentation. Firstly, we will discuss how to monitor autophagic flux and autophagosome fusion with MHC class II loading compartments. Secondly, we will show how to target proteins to autophagosomes in order to monitor macroautophagy-dependent antigen processing via their enhanced presentation on MHC class II molecules to CD4(+) T cells. And finally, we will describe how macroautophagy can be silenced in antigen presenting cells, like human monocyte-derived dendritic cells (DCs).


Assuntos
Apresentação de Antígeno , Autofagia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Neoplasias/genética , Células Clonais/citologia , Células Clonais/imunologia , Células Clonais/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imuno-Histoquímica , Interferon gama/metabolismo , Proteínas de Membrana/genética , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Monócitos/citologia , Proteínas Recombinantes de Fusão/genética , Transfecção
19.
Semin Immunopathol ; 32(4): 373-81, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20857294

RESUMO

T cells detect infected and transformed cells via antigen presentation by major histocompatibility complex (MHC) molecules on the cell surface. For T cell stimulation, these MHC molecules present fragments of proteins that are expressed or taken up by the cell. These fragments are generated by distinct proteolytic mechanisms for presentation on MHC class I molecules to cytotoxic CD8(+) and on MHC class II molecules to helper CD4(+) T cells. Proteasomes are primarily involved in MHC class I ligand and lysosomes, in MHC class II ligand generation. Autophagy delivers cytoplasmic material to lysosomes and, therefore, contributes to cytoplasmic antigen presentation by MHC class II molecules. In addition, it has been recently realized that this process also supports extracellular antigen processing for MHC class II presentation and cross-presentation on MHC class I molecules. Although the exact mechanisms for the regulation of these antigen processing pathways by autophagy are still unknown, recent studies, summarized in this review, suggest that they contribute to immune responses against infections and to maintain tolerance. Moreover, they are targeted by viruses for immune escape and could maybe be harnessed for immunotherapy.


Assuntos
Apresentação de Antígeno/imunologia , Autofagia/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos , Humanos , Tolerância Imunológica , Lisossomos/imunologia , Linfócitos T Reguladores/imunologia
20.
Autophagy ; 6(1): 166-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20009549

RESUMO

We have recently characterized that influenza A virus blocks autophagosome degradation via its matrix protein 2. Matrix protein 2 seems to achieve this macroautophagy inhibition not by its well-characterized proton channel function, but possibly due to its binding to Atg6/Beclin 1, thereby enhancing the death of its host cell. Here we discuss several viruses that now have been described to compromise macroautophagy via binding to Atg6/Beclin 1 with different outcomes for their replication, and how interaction with one and the same protein could inhibit autophagosome generation or degradation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Marcação de Genes , Proteínas de Membrana/genética , Viroses/terapia , Vírus/imunologia , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Autofagia/imunologia , Autofagia/fisiologia , Proteína Beclina-1 , Marcação de Genes/métodos , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Proteínas de Membrana/fisiologia , Modelos Biológicos , Viroses/genética , Viroses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...